3.6.7 \(\int \frac {(c+d x+e x^2+f x^3) \sqrt {a+b x^4}}{x^8} \, dx\) [507]

Optimal. Leaf size=375 \[ -\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} e x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {b f \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 \sqrt {a}}-\frac {2 b^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} c-21 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}} \]

[Out]

-1/4*b*f*arctanh((b*x^4+a)^(1/2)/a^(1/2))/a^(1/2)-1/420*(60*c/x^7+70*d/x^6+84*e/x^5+105*f/x^4)*(b*x^4+a)^(1/2)
-2/21*b*c*(b*x^4+a)^(1/2)/a/x^3-1/6*b*d*(b*x^4+a)^(1/2)/a/x^2-2/5*b*e*(b*x^4+a)^(1/2)/a/x+2/5*b^(3/2)*e*x*(b*x
^4+a)^(1/2)/a/(a^(1/2)+x^2*b^(1/2))-2/5*b^(5/4)*e*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1
/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1
/2)+x^2*b^(1/2))^2)^(1/2)/a^(3/4)/(b*x^4+a)^(1/2)-1/105*b^(5/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos
(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(-21*e*a^(1/2)+5*c*b^(1/
2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/a^(5/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 375, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 12, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {14, 1839, 1847, 1296, 1212, 226, 1210, 1266, 821, 272, 65, 214} \begin {gather*} -\frac {b^{5/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (5 \sqrt {b} c-21 \sqrt {a} e\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}-\frac {2 b^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}+\frac {2 b^{3/2} e x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {1}{420} \sqrt {a+b x^4} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right )-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}-\frac {b f \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 \sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^8,x]

[Out]

-1/420*(((60*c)/x^7 + (70*d)/x^6 + (84*e)/x^5 + (105*f)/x^4)*Sqrt[a + b*x^4]) - (2*b*c*Sqrt[a + b*x^4])/(21*a*
x^3) - (b*d*Sqrt[a + b*x^4])/(6*a*x^2) - (2*b*e*Sqrt[a + b*x^4])/(5*a*x) + (2*b^(3/2)*e*x*Sqrt[a + b*x^4])/(5*
a*(Sqrt[a] + Sqrt[b]*x^2)) - (b*f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*Sqrt[a]) - (2*b^(5/4)*e*(Sqrt[a] + Sqrt
[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*a^(3/4)
*Sqrt[a + b*x^4]) - (b^(5/4)*(5*Sqrt[b]*c - 21*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] +
Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*a^(5/4)*Sqrt[a + b*x^4])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1266

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1296

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a
 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + c*x^4)^p*(a*e*(m + 1) -
c*d*(m + 4*p + 5)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p]
|| IntegerQ[m])

Rule 1839

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u = IntHide[x^m*Pq, x]}, Simp[u*(a +
 b*x^n)^p, x] - Dist[b*n*p, Int[x^(m + n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{a
, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1, 0]

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {\left (c+d x+e x^2+f x^3\right ) \sqrt {a+b x^4}}{x^8} \, dx &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-(2 b) \int \frac {-\frac {c}{7}-\frac {d x}{6}-\frac {e x^2}{5}-\frac {f x^3}{4}}{x^4 \sqrt {a+b x^4}} \, dx\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-(2 b) \int \left (\frac {-\frac {c}{7}-\frac {e x^2}{5}}{x^4 \sqrt {a+b x^4}}+\frac {-\frac {d}{6}-\frac {f x^2}{4}}{x^3 \sqrt {a+b x^4}}\right ) \, dx\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-(2 b) \int \frac {-\frac {c}{7}-\frac {e x^2}{5}}{x^4 \sqrt {a+b x^4}} \, dx-(2 b) \int \frac {-\frac {d}{6}-\frac {f x^2}{4}}{x^3 \sqrt {a+b x^4}} \, dx\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-b \text {Subst}\left (\int \frac {-\frac {d}{6}-\frac {f x}{4}}{x^2 \sqrt {a+b x^2}} \, dx,x,x^2\right )+\frac {(2 b) \int \frac {\frac {3 a e}{5}-\frac {1}{7} b c x^2}{x^2 \sqrt {a+b x^4}} \, dx}{3 a}\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}-\frac {(2 b) \int \frac {\frac {a b c}{7}-\frac {3}{5} a b e x^2}{\sqrt {a+b x^4}} \, dx}{3 a^2}+\frac {1}{4} (b f) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}-\frac {\left (2 b^{3/2} e\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx}{5 \sqrt {a}}-\frac {\left (2 b^{3/2} \left (5 \sqrt {b} c-21 \sqrt {a} e\right )\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx}{105 a}+\frac {1}{8} (b f) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} e x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {2 b^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} c-21 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}+\frac {1}{4} f \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )\\ &=-\frac {1}{420} \left (\frac {60 c}{x^7}+\frac {70 d}{x^6}+\frac {84 e}{x^5}+\frac {105 f}{x^4}\right ) \sqrt {a+b x^4}-\frac {2 b c \sqrt {a+b x^4}}{21 a x^3}-\frac {b d \sqrt {a+b x^4}}{6 a x^2}-\frac {2 b e \sqrt {a+b x^4}}{5 a x}+\frac {2 b^{3/2} e x \sqrt {a+b x^4}}{5 a \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {b f \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 \sqrt {a}}-\frac {2 b^{5/4} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 a^{3/4} \sqrt {a+b x^4}}-\frac {b^{5/4} \left (5 \sqrt {b} c-21 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{105 a^{5/4} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.34, size = 283, normalized size = 0.75 \begin {gather*} \frac {-\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} \left (\left (a+b x^4\right ) \left (2 b x^4 (20 c+7 x (5 d+12 e x))+a (60 c+7 x (10 d+3 x (4 e+5 f x)))\right )+105 \sqrt {a} b f x^7 \sqrt {a+b x^4} \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )\right )+168 \sqrt {a} b^{3/2} e x^7 \sqrt {1+\frac {b x^4}{a}} E\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )-8 b^{3/2} \left (-5 i \sqrt {b} c+21 \sqrt {a} e\right ) x^7 \sqrt {1+\frac {b x^4}{a}} F\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )}{420 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x^7 \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^8,x]

[Out]

(-(Sqrt[(I*Sqrt[b])/Sqrt[a]]*((a + b*x^4)*(2*b*x^4*(20*c + 7*x*(5*d + 12*e*x)) + a*(60*c + 7*x*(10*d + 3*x*(4*
e + 5*f*x)))) + 105*Sqrt[a]*b*f*x^7*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])) + 168*Sqrt[a]*b^(3/2)*e
*x^7*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - 8*b^(3/2)*((-5*I)*Sqrt[b]*c +
 21*Sqrt[a]*e)*x^7*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(420*a*Sqrt[(I*S
qrt[b])/Sqrt[a]]*x^7*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.41, size = 326, normalized size = 0.87

method result size
elliptic \(-\frac {c \sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {d \sqrt {b \,x^{4}+a}}{6 x^{6}}-\frac {e \sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {f \sqrt {b \,x^{4}+a}}{4 x^{4}}-\frac {2 b c \sqrt {b \,x^{4}+a}}{21 a \,x^{3}}-\frac {b d \sqrt {b \,x^{4}+a}}{6 a \,x^{2}}-\frac {2 b e \sqrt {b \,x^{4}+a}}{5 a x}-\frac {2 b^{2} c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {2 i b^{\frac {3}{2}} e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {b f \arctanh \left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{4 \sqrt {a}}\) \(314\)
default \(e \left (-\frac {\sqrt {b \,x^{4}+a}}{5 x^{5}}-\frac {2 b \sqrt {b \,x^{4}+a}}{5 a x}+\frac {2 i b^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+f \left (-\frac {\left (b \,x^{4}+a \right )^{\frac {3}{2}}}{4 a \,x^{4}}-\frac {b \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4 \sqrt {a}}+\frac {b \sqrt {b \,x^{4}+a}}{4 a}\right )-\frac {d \left (b \,x^{4}+a \right )^{\frac {3}{2}}}{6 a \,x^{6}}+c \left (-\frac {\sqrt {b \,x^{4}+a}}{7 x^{7}}-\frac {2 b \sqrt {b \,x^{4}+a}}{21 a \,x^{3}}-\frac {2 b^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(326\)
risch \(-\frac {\sqrt {b \,x^{4}+a}\, \left (168 b e \,x^{6}+70 b d \,x^{5}+40 b c \,x^{4}+105 a f \,x^{3}+84 a e \,x^{2}+70 a d x +60 a c \right )}{420 x^{7} a}+\frac {2 i b^{\frac {3}{2}} e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {2 i b^{\frac {3}{2}} e \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {a}\, \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {2 b^{2} c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{21 a \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {b f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4 \sqrt {a}}\) \(327\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^8,x,method=_RETURNVERBOSE)

[Out]

e*(-1/5/x^5*(b*x^4+a)^(1/2)-2/5*b/a*(b*x^4+a)^(1/2)/x+2/5*I*b^(3/2)/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(
1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2)
,I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)))+f*(-1/4/a/x^4*(b*x^4+a)^(3/2)-1/4*b/a^(1/2)*ln((2*a+2*a^(1/2)*(
b*x^4+a)^(1/2))/x^2)+1/4*b/a*(b*x^4+a)^(1/2))-1/6*d*(b*x^4+a)^(3/2)/a/x^6+c*(-1/7/x^7*(b*x^4+a)^(1/2)-2/21*b/a
*(b*x^4+a)^(1/2)/x^3-2/21*b^2/a/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)
*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^8,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + x^2*e + d*x + c)/x^8, x)

________________________________________________________________________________________

Fricas [A]
time = 0.11, size = 173, normalized size = 0.46 \begin {gather*} -\frac {336 \, \sqrt {a} b e x^{7} \left (-\frac {b}{a}\right )^{\frac {3}{4}} E(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) - 105 \, \sqrt {a} b f x^{7} \log \left (-\frac {b x^{4} - 2 \, \sqrt {b x^{4} + a} \sqrt {a} + 2 \, a}{x^{4}}\right ) - 16 \, {\left (5 \, b c + 21 \, b e\right )} \sqrt {a} x^{7} \left (-\frac {b}{a}\right )^{\frac {3}{4}} F(\arcsin \left (x \left (-\frac {b}{a}\right )^{\frac {1}{4}}\right )\,|\,-1) + 2 \, {\left (168 \, b e x^{6} + 70 \, b d x^{5} + 40 \, b c x^{4} + 105 \, a f x^{3} + 84 \, a e x^{2} + 70 \, a d x + 60 \, a c\right )} \sqrt {b x^{4} + a}}{840 \, a x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^8,x, algorithm="fricas")

[Out]

-1/840*(336*sqrt(a)*b*e*x^7*(-b/a)^(3/4)*elliptic_e(arcsin(x*(-b/a)^(1/4)), -1) - 105*sqrt(a)*b*f*x^7*log(-(b*
x^4 - 2*sqrt(b*x^4 + a)*sqrt(a) + 2*a)/x^4) - 16*(5*b*c + 21*b*e)*sqrt(a)*x^7*(-b/a)^(3/4)*elliptic_f(arcsin(x
*(-b/a)^(1/4)), -1) + 2*(168*b*e*x^6 + 70*b*d*x^5 + 40*b*c*x^4 + 105*a*f*x^3 + 84*a*e*x^2 + 70*a*d*x + 60*a*c)
*sqrt(b*x^4 + a))/(a*x^7)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 3.09, size = 192, normalized size = 0.51 \begin {gather*} \frac {\sqrt {a} c \Gamma \left (- \frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {7}{4}, - \frac {1}{2} \\ - \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{7} \Gamma \left (- \frac {3}{4}\right )} + \frac {\sqrt {a} e \Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, - \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{5} \Gamma \left (- \frac {1}{4}\right )} - \frac {\sqrt {b} d \sqrt {\frac {a}{b x^{4}} + 1}}{6 x^{4}} - \frac {\sqrt {b} f \sqrt {\frac {a}{b x^{4}} + 1}}{4 x^{2}} - \frac {b^{\frac {3}{2}} d \sqrt {\frac {a}{b x^{4}} + 1}}{6 a} - \frac {b f \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{4 \sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**8,x)

[Out]

sqrt(a)*c*gamma(-7/4)*hyper((-7/4, -1/2), (-3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**7*gamma(-3/4)) + sqrt(a)*e*
gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x**5*gamma(-1/4)) - sqrt(b)*d*sqrt(a/(b*
x**4) + 1)/(6*x**4) - sqrt(b)*f*sqrt(a/(b*x**4) + 1)/(4*x**2) - b**(3/2)*d*sqrt(a/(b*x**4) + 1)/(6*a) - b*f*as
inh(sqrt(a)/(sqrt(b)*x**2))/(4*sqrt(a))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^8,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + x^2*e + d*x + c)/x^8, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {b\,x^4+a}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^8} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^8,x)

[Out]

int(((a + b*x^4)^(1/2)*(c + d*x + e*x^2 + f*x^3))/x^8, x)

________________________________________________________________________________________